We recall some identities and definitions from last time:

If \(v, w \) are vector fields and \(\alpha \) is a \(p \)-form:

1. \(\text{Lie}_v \alpha = i_v d\alpha + d i_v \alpha \)

 (\(i_v \) is the interior product and \(d \) is the exterior derivative)

2. \(\text{Lie}_v d\alpha = d \text{Lie}_v \alpha \)

3. \(\text{Lie}_v i_w \alpha = i_{[v,w]} \alpha + i_w \text{Lie}_v \alpha \)

Also from last time:

- We defined a symplectic manifold:

 \(X \) is a smooth \(\mathcal{C}^\infty \)-manifold and \(\omega \) is a 2-form, with \(d\omega = 0 \) (closed) and if \(v \in T_x(X) \) and \(\forall v \in T_x(X) \), \(\omega(v, v) = 0 \) \(\Rightarrow v = 0 \) (non-degeneracy)

- \(\omega \) gives an isomorphism \(T_x \times \mathbb{R} \rightarrow T^*_x \) \((X) \)

\[
\begin{align*}
\omega : & \ T_x(X) \rightarrow T^*_x(X) \\
& v \quad \omega(v, -)
\end{align*}
\]

- Given a function \(f \in \mathcal{C}^\infty(X) \), we defined \(v^*_f \in \text{Vect}(X) \) to be:

\[
\text{df} = -i_{v^*_f} \omega
\]

(Note the sign change)

This \(v^*_f \) is a Hamiltonian vector field.
- Symplectic structure makes $C^\infty(X)$ a Poisson algebra
 (Lie algebra + extra property)

 \[\{ f, gh \} = \{ f, gh \} + g \{ f, h \} \]

 What is $\{ \cdot, \cdot \}$?

 \[f, g \in C^\infty(X), \quad \{ f, g \} = \omega(v_f, v_g) \]

 From this definition we get some identities:

 \[\{ f, g \} = \omega(v_f, v_g) \]

 \[df = - i_{v_f} \omega = - \omega(v_f, -) \]

 \[dg = - i_{v_g} \omega = - \omega(v_g, -) \]

 \[dg(v_f) = - \omega(v_g, v_f) = \omega(v_f, v_g) \]

 \[\{ f, g \} = dg(v_f) = v_f(g) \]

 \[\{ f, g \} = i_{v_f} dg \]

 Note: $\text{Lie}_{v_f} g = i_{v_f} dg + d(i_{v_f} g) \quad i_{v_f} g = 0$

 \[\{ f, g \} = \text{Lie}_{v_f} g \]
Lie algebras

(1) Lie algebra: \(\text{Vect}(X) \)

\[[\cdot, \cdot] = \text{lie bracket of vector fields} \]

(2) Poisson algebra: \((C^\infty(X), \{\cdot, \cdot\}) \)

Proposition: The set of all Hamiltonian vector fields \(\text{Vect}_H(X) \)

is a Lie subalgebra of \(\text{Vect}(X) \). Furthermore,

\[C^\infty(X) \xrightarrow{\phi} \text{Vect}_H(X) \]

\[f \xrightarrow{} v_f \]

is a Lie algebra homomorphism.

Proof: Show \(v_f, v_g \in \text{Vect}_H(X) \) \(\Rightarrow \) \([v_f, v_g] \in \text{Vect}_H(X) \) by showing \(\exists F \in C^\infty(X) \) s.t.

\[dF = -i_{[v_f, v_g]} \omega \]

From our identities \(\circ \), Liouville's theorem from last time, we have

\[\text{Lie}_{v_f} i_{v_g} \omega = i_{[v_f, v_g]} \omega + i_{v_g} \text{Lie}_{v_f} \omega = i_{[v_f, v_g]} \omega \]
Note: \(i_{v_g} \omega = -d g \)

\[
\text{Lie}_{v_f} (-d g) = i_{[v_f, v_g]} \omega \\
-d \text{Lie}_{v_f} g = i_{[v_f, v_g]} \omega \\
d \{ f, g \} = -i_{[v_f, v_g]} \omega
\]

So, this implies

\[
\{ f, g \} \rightarrow [v_f, v_g]
\]

which implies

\[
\phi (\{ f, g \}) = [\phi (f), \phi (g)].
\]

\[\square\]

Question: What is the kernel of \(\phi \)?

Answer: \(f \in \ker \phi \implies v_f = 0 \implies -i_{v_f} \omega = 0 = \omega (0, -) \)

\(\implies df = 0 \)

\(\implies f \) is locally constant.

So, \(\ker \phi = \mathbb{R}^{n_c}, \; n_c = \# \) of connected components of \(X \).
Example: \mathbb{R}^2, $\omega = dp \wedge dq$

if $f \in \mathcal{C}^\infty(\mathbb{R}^2)$, what is v_f?

$$v_f = v_f^q \frac{d}{dq} + v_f^p \frac{d}{dp}$$

$$df = \frac{df}{dq} dq + \frac{df}{dp} dp$$

$$df = -\omega(v_f, -)$$

$$= (-v_f^q \frac{d}{dq} dp \wedge dq) - (v_f^p \frac{d}{dp} dp \wedge dq)$$

$$= v_f^q \frac{d}{dq} dp \wedge dq - v_f^p dq$$

$$= v_f^p dp - v_f^p dq$$

Equating coefficients, we have

$$\frac{df}{dq} = -v_f^q$$

$$\frac{df}{dp} = v_f^p$$

In \mathbb{R}^2,

$$v_f = \frac{df}{dp} \frac{d}{dq} - \frac{df}{dq} \frac{d}{dp}$$

Then,

$$\{f, g\} = v_f(g) = \frac{df}{dp} \frac{dg}{dq} - \frac{df}{dq} \frac{dg}{dp}$$
Hamiltonian mechanics:

\[F = ma, \quad a = \frac{d^2 q}{dt^2} \]

\[F = m \frac{d^2 q}{dt^2}, \quad 2^{nd} \text{ order ODE} \]

Let the force be minus the gradient of a potential function

\[V: \mathbb{R}^n \longrightarrow \mathbb{R} \]

\[-\nabla V = m \frac{d^2 q}{dt^2} \]

• define momentum \(p = mv = m \frac{dq}{dt} \)

• 2 first order equations:

\[\frac{dq}{dt} = \frac{p}{m}, \quad \frac{dp}{dt} = -\nabla V \]

Define \(H: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R} \)

\[H(q, p) = \frac{p^2}{2m} + V(q) \]

↑

↑

Kinetic Potential
\[\frac{\partial H}{\partial q} = \nabla V, \quad \frac{\partial H}{\partial p} = \frac{p}{m} \]

\[\Rightarrow \quad \frac{dq}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q} \]

These are Hamilton's equations.

(a solution is: \(q(t), p(t)\))

Constructing a symplectic structure:

Let \(\mathbb{R}^2\) be our configuration space. This implies that \(\mathbb{R}^2\) is the space of position and momentum, \((q, p) \in \mathbb{R}^2\) (phase space).

The symplectic form is \(\omega = dp \wedge dq\), i.e., the Hamiltonian \(H \in C^0(\mathbb{R}^2)\).

What is \(\nabla_H\) ?

\[\nabla_H = \frac{\partial H}{\partial p} \frac{\partial}{\partial q} - \frac{\partial H}{\partial q} \frac{\partial}{\partial p} \]
What is the flow of ν_H?

Find a curve $\gamma : \mathbb{R} \rightarrow \mathbb{R}^2$

$t \rightarrow (q(t), p(t))$

Then,

\[
\frac{d\gamma}{dt} = \frac{dq}{dt} \frac{\partial}{\partial q} + \frac{dp}{dt} \frac{\partial}{\partial p}
\]

If ν_H is the vector field tangent to γ, then

\[
\frac{dq}{dt} = \frac{\partial H}{\partial t}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial q}
\]

Physical meaning of $\lbrace \cdot, \cdot \rbrace$:

$f \in C^0(\mathbb{R}^2)$, what is $\lbrace H, f \rbrace$?

$\lbrace H, f \rbrace = \text{Lie}_{\nu_H} f = \frac{df}{dt}(q(t), p(t))$

Conserved quantities:

"conservation of energy"

\[
\frac{dH(q(t), p(t))}{dt} = 0, \quad \text{which we have since } \lbrace H, H \rbrace = 0.
\]