- X. Bresson, T. Laurent, D. Uminsky and J. H. von Brecht

An adaptive total variation algorithm for computing the balanced cut of a graph (Technical report)

arXiv:1302.2717, February 2013

- D. Balague, J. A. Carrillo, T. Laurent and G. Raoul

Dimensionality of Local Minimizers of the Interaction Energy

Submitted.

- S. Ramakrishnan, T. Laurent, M. Kumar, and A. L. Bertozzi

A spatiotemporal chemotactic model for ant foraging

Submitted.

- X. Bresson, T. Laurent, D. Uminsky and J. H. von Brecht

Convergence and Energy Landscape for Cheeger Cut Clustering

Advances in Neural Information Processing Systems 25 (NIPS 2012), pp.1394--1402

- X. Bresson and T. Laurent

Asymmetric Cheeger cut and application to multi-class unsupervised clustering (Technical report)

CAM Report 12-27, April 2012

- D. Balague, J. A. Carrillo, T. Laurent and G. Raoul

Nonlocal interactions by repulsive-attractive potentials: radial ins/stability

To appear in Physica D: Nonlinear Phenomena.

- A. L. Bertozzi, T. Laurent, and F. Leger,

Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions.

Mathematical Models and Methods in Applied Sciences, 22, (2012).

- A. L. Bertozzi, J. B. Garnett, and T. Laurent,

Characterization of radially symmetric finite time blowup in multidimensional aggregation equations

SIAM J. Math. Anal., 44, No 2 (2012), pp. 651--681.

- J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepcev,

Confinement in nonlocal interaction equations

Nonlinear Analysis, 75 (2012), pp. 550--558

- Andrea Bertozzi, Thomas Laurent and Jesus Rosado,

L^p Theory for the Multidimensional Aggregation Equation

CPAM, Vol. 64, Issue 1, pages 45-83, January 2011

- J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepcev,

Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations

Duke Math. J., 156, No 2 (2011), pp. 229--271.

- Andrea Bertozzi, Thomas Laurent,

The Behavior of Solutions of Multidimensional Aggregation Equations with Mildly Singular interaction Kernels

Chinese Annals of Mathematics (special Majda issue), 30, No 5 (2009), pp 463-482

- Andrea Bertozzi, Jose Antonio Carrillo, Thomas Laurent,

Blowup in multidimensional aggregation equations with mildly singular interaction kernels

Nonlinearity 22 No 3 (March 2009) 683-710.

- Andrea Bertozzi, Thomas Laurent,

Finite-time Blow-up of Solutions of an Aggregation Equation in R^n

Comm. Math. Phys. vol. 274, 2007, no. 3, pp. 717-735.

- Thomas Laurent,

Local and Global Existence for an Aggregation Equation

Communications in Partial Differential Equations, vol. 32, 2007, no. 12, pp. 1941-1964.

- Thomas Laurent, Brian Rider and Michael Reed,

Parabolic Behavior of a Hyperbolic Delay Equation

SIAM J. Math. Anal., vol. 38, 2006, no.1, pp. 1-15.

- NSF grant DMS-1109805

Nonlocal interaction equations and applications to collective motion of individuals

Back

Home