DG homological algebra and solution to a question of Vasconcelos

Saeed Nasseh Sean Sather-Wagstaff

Department of Mathematics
North Dakota State University

January 11, 2013
AMS Special Session on Homotopy Theory and Commutative Algebra, San Diego
Assumption

\((R, m, k)\) is a local commutative noetherian ring with unity.
<table>
<thead>
<tr>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>((R, \mathfrak{m}, k)) is a local commutative noetherian ring with unity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Foxby 1972)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A finitely generated (R)-module (C) is semidualizing if (R \cong \text{Hom}_R(C, C)) and (\text{Ext}^i_R(C, C) = 0) for all (i > 0).</td>
</tr>
</tbody>
</table>
Assumption

\((R, m, k)\) is a local commutative noetherian ring with unity.

Definition (Foxby 1972)

A finitely generated \(R\)-module \(C\) is semidualizing if \(R \cong \text{Hom}_R(C, C)\) and \(\text{Ext}^i_R(C, C) = 0\) for all \(i > 0\).

Example

1. \(R\) is a semidualizing \(R\)-module
Assumption

\((R, \mathfrak{m}, k)\) is a local commutative noetherian ring with unity.

Definition (Foxby 1972)

A finitely generated \(R\)-module \(C\) is semidualizing if
\(R \cong \text{Hom}_R(C, C)\) and \(\text{Ext}^i_R(C, C) = 0\) for all \(i > 0\).

Example

1. \(R\) is a semidualizing \(R\)-module
2. \(D\) is dualizing for \(R\) if and only if it is semidualizing and \(\text{id}_R(D) < \infty\)
Assumption

\((R, \mathfrak{m}, k)\) is a local commutative noetherian ring with unity.

Definition (Foxby 1972)

A finitely generated \(R\)-module \(C\) is \textit{semidualizing} if
\[R \cong \text{Hom}_R(C, C) \] and
\[\text{Ext}^i_R(C, C) = 0 \quad \text{for all} \quad i > 0. \]

Example

1. \(R\) is a semidualizing \(R\)-module
2. \(D\) is dualizing for \(R\) if and only if it is semidualizing and
\[\text{id}_R(D) < \infty \]

Notation

\(\mathfrak{S}(R) = \{\text{isomorphism classes of semidualizing } R\text{-modules}\}.\)
Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathcal{G}(R) \leftrightarrow \mathcal{G}(S)$ by $C \mapsto S \otimes_R C$.
Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathcal{G}(R) \hookrightarrow \mathcal{G}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos, 1974)

If R is Cohen-Macaulay, then $\mathcal{G}(R)$ is finite.
Fact (Base-change)

If $R \rightarrow S$ is a local homomorphism of finite flat dimension, then $\mathcal{G}(R) \hookrightarrow \mathcal{G}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcellos, 1974)

If R is Cohen-Macaulay, then $\mathcal{G}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff, 2008)

If R is CM and equicharacteristic, then $\mathcal{G}(R)$ is finite.
Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathcal{S}(R) \hookrightarrow \mathcal{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos, 1974)

If R is Cohen-Macaulay, then $\mathcal{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff, 2008)

If R is CM and equicharacteristic, then $\mathcal{S}(R)$ is finite.

Outline of proof

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \bar{k})$. Let $\mathbf{x} \in \mathfrak{m}R'$ be a maximal R'-sequence. Then $R'/\mathbf{x}R'$ is artinian and $\mathcal{S}(R) \hookrightarrow \mathcal{S}(R') \hookrightarrow \mathcal{S}(R'/\mathbf{x}R')$. A result of Happel shows that $\mathcal{S}(R'/\mathbf{x}R')$ is finite.

S. Nasseh and S. Sather-Wagstaff
A commutative differential graded (DG) R-algebra is

1. a graded commutative R-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with

2. a differential ∂^A (i.e., a sequence of R-linear maps $\partial_i^A: A_i \to A_{i-1}$ such that $\partial_{i-1}^A \partial_i^A = 0$ for all i) such that ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_j \in A_j$

$$\partial_{i+j}^A(a_ia_j) = \partial_i^A(a_i)a_j + (-1)^i a_i \partial_j^A(a_j).$$
A commutative differential graded (DG) R-algebra is

1. a graded commutative R-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with

2. a differential ∂^A (i.e., a sequence of R-linear maps $\partial^A_i: A_i \to A_{i-1}$ such that $\partial^A_{i-1} \partial^A_i = 0$ for all i) such that ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_j \in A_j$

$$\partial^A_{i+j}(a_ia_j) = \partial^A_i(a_i)a_j + (-1)^i a_i \partial^A_j(a_j).$$

Example (The ground ring)

R is a DG R-algebra.
Definition

A commutative differential graded (DG) R-algebra is

1. a graded commutative R-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
2. a differential ∂^A (i.e., a sequence of R-linear maps $\partial_i^A: A_i \to A_{i-1}$ such that $\partial_{i-1}^A \partial_i^A = 0$ for all i) such that ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_j \in A_j$

$$\partial_{i+j}^A(a_i a_j) = \partial_i^A(a_i) a_j + (-1)^i a_i \partial_j^A(a_j).$$

Example (The ground ring)

R is a DG R-algebra.

Example (The Koszul complex)

$K = K^R(x)$ is a DG R-algebra for each sequence $x \in R$.
Definition

Let A be a DG R-algebra. A DG A-module is a graded R-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential ∂^M that satisfies the Leibniz Rule.
Definition

Let A be a DG R-algebra. A DG A-module is a graded R-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential ∂^M that satisfies the Leibniz Rule.

Example (The ground ring)

The DG R-modules are bounded below R-complexes, e.g., a projective resolution of an R-module.
Definition

Let A be a DG R-algebra. A DG A-module is a graded R-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential ∂^M that satisfies the Leibniz Rule.

Example (The ground ring)

The DG R-modules are bounded below R-complexes, e.g., a projective resolution of an R-module.

Example (The Koszul complex)

$K \otimes_R M$ is a DG K-module for each DG R-module M.
Definition

Let A be a DG R-algebra. A DG A-module M is \textit{semi-free} if the underlying $A\natural$-module $M\natural$ has a graded basis.
Definition

Let \(A \) be a DG \(R \)-algebra. A DG \(A \)-module \(M \) is **semi-free** if the underlying \(A^\# \)-module \(M^\# \) has a graded basis.

Example (The ground ring)

A semi-free DG \(R \)-module is a bounded below complex of free \(R \)-modules.
Definition

Let A be a DG R-algebra. A DG A-module M is semi-free if the underlying $A^\mathbb{H}$-module $M^\mathbb{H}$ has a graded basis.

Example (The ground ring)

A semi-free DG R-module is a bounded below complex of free R-modules.

Example (The Koszul complex)

$K \otimes_R M$ is a semi-free DG K-module for each semi-free DG R-module M.
Definition

Let A be a DG R-algebra. A semi-free DG A-module C is **semidualizing** if it is homologically finite and the natural map $A \rightarrow \text{Hom}_A(C, C)$ is a quasiisomorphism.
Definition

Let A be a DG R-algebra. A semi-free DG A-module C is **semidualizing** if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasiisomorphism.

Notation

$\mathcal{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.
Definition

Let A be a DG R-algebra. A semi-free DG A-module C is **semidualizing** if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasiisomorphism.

Notation

$\mathcal{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.

Example (The ground ring)

A projective resolution of a semidualizing R-module is a semidualizing DG R-module: $\mathcal{S}(R) \hookrightarrow \mathcal{S}_{dg}(R)$.
Definition

Let A be a DG R-algebra. A semi-free DG A-module C is **semidualizing** if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasiisomorphism.

Notation

$\mathcal{G}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.

Example (The ground ring)

A projective resolution of a semidualizing R-module is a semidualizing DG R-module: $\mathcal{G}(R) \hookrightarrow \mathcal{G}_{dg}(R)$.

Example (The Koszul complex)

$K \otimes_R C$ is a semidualizing DG K-module for each semidualizing DG R-module C: $\mathcal{G}_{dg}(R) \hookrightarrow \mathcal{G}_{dg}(K)$.

S. Nasseh and S. Sather-Wagstaff
Theorem (Nasseh, Sather-Wagstaff)

The set $\mathcal{S}(R)$ is finite.
Theorem (Nasseh, Sather-Wagstaff)

The set $\mathcal{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathcal{S}_{dg}(R)$ is finite.
Theorem (Nasseh, Sather-Wagstaff)

The set $\mathcal{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathcal{S}_{\text{dg}}(R)$ is finite.

1. There is a flat local ring homomorphism $R \to (R', mR', \bar{k})$ such that R' is complete.
Theorem (Nasseh, Sather-Wagstaff)

The set $\mathcal{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathcal{S}_{dg}(R)$ is finite.

1. There is a flat local ring homomorphism $R \to (R', mR', k)$ such that R' is complete.

2. Let $x \in mR'$ be minimal generating sequence and $K = K^{R'}(x)$. Now, there exists a finite dimensional DG algebra U over \bar{k} such that

$$R \to R' \to K \xrightarrow{\sim} U.$$
Theorem (Nasseh, Sather-Wagstaff)

The set $\mathcal{G}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathcal{G}_{dg}(R)$ is finite.

1. There is a flat local ring homomorphism $R \to (R', mR', \overline{k})$ such that R' is complete.
2. Let $x \in mR'$ be minimal generating sequence and $K = K^{R'}(x)$. Now, there exists a finite dimensional DG algebra U over \overline{k} such that

$$R \to R' \to K \xrightarrow{\sim} U.$$

3. This diagram and the lifting result imply that

$$\mathcal{G}_{dg}(R) \hookrightarrow \mathcal{G}_{dg}(R') \simeq \mathcal{G}_{dg}(K) \simeq \mathcal{G}_{dg}(U).$$
4. We parametrize the set of all DG U-modules with fixed underlying graded \bar{k}-vector space by an algebraic scheme.
4. We parametrize the set of all DG U-modules with fixed underlying graded \bar{k}-vector space by an algebraic scheme.

5. A general linear group acts on this scheme so that orbits are exactly elements of $\mathcal{S}_{dg}(U)$.
4. We parametrize the set of all DG U-modules with fixed underlying graded \overline{k}-vector space by an algebraic scheme.
5. A general linear group acts on this scheme so that orbits are exactly elements of $S_{dg}(U)$.
6. On the other hand, Ext vanishing implies that every semidualizing DG U-module has an open orbit.
4. We parametrize the set of all DG U-modules with fixed underlying graded \bar{k}-vector space by an algebraic scheme.

5. A general linear group acts on this scheme so that orbits are exactly elements of $\mathcal{S}_{dg}(U)$.

6. On the other hand, Ext vanishing implies that every semidualizing DG U-module has an open orbit.

∗ DG Ext is different from Yoneda Ext!
4. We parametrize the set of all DG U-modules with fixed underlying graded \overline{k}-vector space by an algebraic scheme.
5. A general linear group acts on this scheme so that orbits are exactly elements of $\mathcal{S}_{dg}(U)$.
6. On the other hand, Ext vanishing implies that every semidualizing DG U-module has an open orbit.
* DG Ext is different from Yoneda Ext!
7. We prove that there can only be finitely many open orbits, so $\mathcal{S}_{dg}(U)$ is finite.