def: (successor) Let A be a set. The successor of A is the set $A^+ = A \cup \{A\}$.

def: (inductive set) A set ω is an inductive (or successor) set iff $\emptyset \in \omega$ \& if $n \in \omega$ then $n^+ \in \omega$.

Axiom (in Zermelo-Fraenkel set theory): There is an inductive set.

Problem #2: Let A be an inductive set.

(i) Claim: If B is an inductive set then $B \cap A \neq \emptyset$.

Proof: A, B are inductive sets. $\emptyset \in A, \emptyset \in B$ (by def.)

$\therefore \emptyset \in A \cap B$ by def. of intersection.

$\therefore A \cap B$ contains at least 1 element

$\therefore A \cap B$ is not empty $\Rightarrow \emptyset \neq A \cap B \Box$

(ii) Claim: If I is a family of inductive sets then $\cap I$ is an inductive set.

Proof: By definition $\cap I = \{x \mid \forall A \in I \ x \in A\} \cap \cap I$.

Let $A \in I$. A inductive $\therefore \emptyset \in A$

$\therefore \forall A \in I, \emptyset \in A$

\therefore by definition $\emptyset \in \cap I$.

Let $n \in \cap I$, By definition $\forall A \in I \ n \in A$

Let $A \in I$. Then $n \in A$. A inductive

$\therefore n^+ \in A$ $\therefore \forall A \in I \ n^+ \in A$

\therefore by definition $n^+ \in \cap I$ $\therefore \cap I$ is an inductive set \Box
(iii) Define \(\bar{\omega} = \bigcap \{B \leq A : B \text{ is inductive}\} \)
\[= \{x \mid x \in B \land B \leq A : B \text{ inductive}\}.\]

Claim: Let \(C \) be an inductive set. Then \(\bar{\omega} \subseteq C \).

Proof: By (ii) \(\bar{\omega} \) is inductive. By (ii) \(A \cap C \)

is inductive. (take your family \(\mathcal{A} \) to be \(\{A \cap C, \) Then \(\bigcap \mathcal{A} = A \cap C \).

Let \(x \in A \cap C \). Then \(x \in A \cap x \in C \) by def of \(\bigcap \).

\[A \cap C \subseteq A \cap (A \cap C) \text{ by def of } \subseteq.
\]

Let \(x \in \bar{\omega} \). Then \(x \in B \land B \leq A \) \& \(B \text{ inductive} \).

\[A \cap C \subseteq A \cap (A \cap C) \text{ inductive} \implies x \in A \cap C.
\]

Since \(A \cap C \subseteq C \), \(x \in C \). \(\forall x \in \bar{\omega}, x \in C \).

\[\therefore \bar{\omega} \subseteq C. \qed\]

Problem 3:

Claim: If \(P \) is linearly ordered \& \(f : P \rightarrow P \)

is strictly increasing (i.e. \(p < q \Rightarrow f(p) < f(q) \))

then \(f \) is 1-1.

Proof: Let \(p \neq q \in P \). Assume \(f(p) = f(q) \).

Since \(P \) is linearly ordered, \(p \leq q \) or \(q \leq p \) or \(p = q \).

Case 1: Assume \(p < q \). Then \(f(p) < f(q) \).

Since \(f(p) = f(q) \), \(f(p) < f(p) \).

Contradiction.
Case 2: Assume \(q < p \). Then \(f(q) < f(p) \).

Since \(f(q) = f(p) \), \(f(q) < f(q) \)

contradicting.

\[\therefore p = q. \quad \therefore f \text{ is 1-1.} \square \]

Problem 4: Let \(\{ P_i \} \) be the set of all Ponds that have ever existed.

Let \(P_i(t) \) be the set of ducks on pond \(P_i \) at time \(t \). Let

\[R = \{(x,y) \in D \mid \exists i \in t \text{ s.t. } x \in P_i(t) \land y \in P_i(t) \} \]

(i) **Reflexive:** \(\forall x \in D \), \((x,x) \in R \).

(ii) \(\exists i \in t \) s.t. \(x \in P_i(t) \). A priori no such \(i \) may exist. (If they did then \(R \) is reflexive.)

(iii) **Symmetric:** Assume \((x,y) \in R \). \(\exists i \in t \) s.t. \(x \in P_i(t) \)

\[y \in P_i(t) \Rightarrow \exists i \in t \text{ s.t. } y \in P_i(t) \land x \in P_i(t) \]

\[\therefore (y,x) \in R. \]

By definition \(R \) antisymmetric \(\Rightarrow \) (if \((x,y) \in R \)

\((y,x) \in R \) then \(x = y \)). Since \(R \) is symmetric,

\[(x,y) \Leftrightarrow (y,x). \]

\(\forall i \in t \) if \(x \neq y \in P_i(t) \), then \(x = y \). Who knows? Not possible.

(iv) **Transitive:** Assume \((x,y) \in R \) \(\land (y,z) \in R \).

Then \(\exists i \in t \) \(\land i' \in t' \) s.t. \(x \in P_i(t) \land y \in P_i(t) \land y \in P_i(t') \).

But doesn't imply

\(\exists i'' \in t'' \) s.t. \(x \in P_i(t'') \land z \in P_i(t''). \)
Problem 45: Let \(A \subseteq \mathbb{Q} \) be an infinite set. Claim:

\[\exists \text{ bijection } f : \mathbb{Q} \to A \]

Proof:

\(\& \) Countable: \(\exists \) bijection \(g : \mathbb{Q} \to \mathbb{N} \).

Let \(g(A) = \{ g(a) \mid a \in A \} \).

Let \(g|_A : A \to g(A) \) be the function \(g|_A(a) = g(a) \).

Then \(g|_A \) is a bijection \((g|_A \text{ is } 1-1 \& \text{ onto}) \).

\(\therefore g(A) \) is an infinite, hence unbounded subset of \(\mathbb{N} \), \(\exists \) a bijection \(h : \mathbb{N} \to g(A) \).

Since \(g|_A \) is a bijection, its inverse \(g|_A^{-1} : g(A) \to A \) is a bijection.

\(\therefore \) We have the composition of bijections:

\[\mathbb{Q} \xrightarrow{g} \mathbb{N} \xrightarrow{h} g(A) \xrightarrow{g|_A^{-1}} A \]

Let \(f = g|_A^{-1} \circ h \circ g : \mathbb{Q} \to A \).

The composition of bijections is a bijection. \(\square \)