A (linear) algebraic group is, roughly, a group of matrices (under matrix multiplication) that consists of all matrices whose entries obey some polynomial equations.

We'll work with matrices having entries in any field K.

Def: Let $M(n,K)$ be the vector space of $n \times n$ matrices with entries in K. We'll write $M(n)$ for short.

Def: Let the general linear group $GL(n,K)$ be the group of all invertible $n \times n$ matrices with entries in K:

$$GL(n,K) = \{ g \in M(n,K) : \det(g) \neq 0 \}$$

We'll write $GL(n)$ for short.

Def: A (linear) algebraic group is a subgroup of $GL(n,K)$ of this form:

$$G = \{ g \in GL(n,K) : P_1(g) = \cdots = P_n(g) = 0 \}$$

where $P_i : M(n,K) \rightarrow K$ are polynomials in the matrix entries.

(This is just a first version of the definition; see Springer for other equivalent definitions. Allowing infinitely many polynomial equations would not change anything, since polynomial rings are Noetherian).
Examples of algebraic groups:

1. $\text{GL}(n, k)$ is the king of all algebraic groups!

2. Let $\text{SL}(n, k)$ (or $\text{SL}(n)$) be the special linear group:

$$\text{SL}(n, k) = \{ g \in \text{GL}(n, k) : \det(g) = 1 \}$$

This is an algebraic group because \det is a polynomial. This partially eliminates the center of $\text{GL}(n, k)$: the center of $\text{SL}(n, k)$ is just the matrices

$$
\begin{pmatrix}
\alpha & 0 & \cdots & 0 \\
0 & \alpha & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha
\end{pmatrix}
$$

s.t. $\alpha^n = 1$.

so it's finite. We'll find out why we want to get rid of the center later.

3. Let $\text{O}(n, k)$ (or $\text{O}(n)$ for short) be the orthogonal group:

$$\text{O}(n, k) = \{ g \in \text{GL}(n, k) : g v \cdot g w = v \cdot w, \forall v, w \in k^n \}$$

where $v \cdot w = \sum_{i=1}^n v_i w_i$.

Note: We could also write $\text{O}(n, k) = \{ g \in \text{GL}(n, k) : g^T g = I \}$ where g^T is the transpose of g. This makes it more clear that $\text{O}(n, k)$ is actually an algebraic group, since it's defined by n^2 quadratic equations.
\[(g v \cdot g w = v \cdot w \iff v \cdot g^T g w = v \cdot w \iff g^T g = 1)\]

Intuitively, \(O(n)\) consists of rotations, reflections, and products of those. A typical reflection is:

\[
\begin{pmatrix}
-1 & 0 \\
0 & 1
\end{pmatrix}
\]

4. If \(g \in O(n)\), \(\det(g^T g) = 1\), so \(\det(g) = \pm 1\). So there's an algebraic group called the **special orthogonal group**:

\[SO(n, K) := O(n, K) \cap SL(n, K)\]

\[= \{ g \in GL(n, K) : g^T g = 1 \text{ and } \det(g) = 1 \}.
\]

Note that in general, the intersection of linear algebraic groups in \(GL(n, K)\) is again algebraic, as seen here.

\(SO(n)\) consists only of rotations.

5. The **Euclidean group** \(E(n, K)\) (or \(E(n)\) for short) is the group of all maps \(f : K^n \to K^n\) of the form

\[f(x) = Rx + v\]

where \(R \in SO(n, K)\) is a rotation and \(v \in K^n\) gives a translation.
For \(n=2 \), \(K=\mathbb{R} \), this is the symmetry group of the Euclidean plane. It's a group because:

\[
R' (R'x + v') + v = (RR')x + (Rv' + v'); \quad R, R' \in SO(n), v, v' \in K^n.
\]

So as a set \(E(n) \cong SO(n) \times K^n \) is not isomorphic as groups though. Multiplication is instead given by

\[
(R, v)(R', v') = (RR', Rv' + v)
\]

It's not then a product of groups; instead it's a "semidirect product."

To make \(E(n) \) into an algebraic group, we need to think of \((R, v)\) as a matrix:

\[
\phi: (R, v) \rightarrow \begin{pmatrix} R & v \\ 0 \cdots 0 & 1 \end{pmatrix}_{n+1}
\]

and check \(\phi ((R, v)(R', v')) = \phi (R, v) \cdot \phi (R', v') \). So now the group operation is matrix multiplication, and we get a subgroup of \(GL(n+1, K) \) that's isomorphic to \(E(n) \). So now we'll say

\[
E(n) = \left\{ g \in GL(n+1); g = \begin{pmatrix} R & v \\ 0 \cdots 0 & 1 \end{pmatrix}, R \in SO(n), v \in K^n \right\}
\]

and this is an algebraic group. Indeed, Euclidean geometry and its generalizations led to the modern theory of algebraic groups.
Euclidean geometry, with $E(2,1)$ as symmetries.

- Originally formulated as a bunch of axioms. One in particular caused trouble: the "parallel postulate", which says:

```
    l'    l
   /    /
  /      /
P       l
```

\[\forall p \in P, \forall l \in L \left(p \parallel l \Rightarrow \forall p' \left(\neg p' \parallel l \Rightarrow \exists l' \in L \left(p' \parallel l' \land \neg \exists q \left(q \parallel l \land q \parallel l' \right) \right) \right) \right) \]

where \(I \subseteq P \times L \) is the relation called "incidence": \(p \parallel l \) means \(p \) lies on \(l \).

There are 2 kinds of geometry that obey all the axioms of Euclidean geometry except the parallel postulate:

1) elliptic geometry

\[x^2 + y^2 + z^2 = 1 \]

\[P = \mathbb{RP}^2 = \mathbb{S}^2 / \sim \]

\[L = \{ \text{great circles} \} \]

Here there are no parallel lines: any two distinct lines intersect in a single point (after identifying antipodal points).
2) hyperbolic geometry

\[x^2 + y^2 - z^2 = 1 \]

\[P = \exists (x^2 + y^2 - z^2 = 1 \land \exists p \sim p') \]

\[L = \exists \text{intersections of the hyperboloid with planes through origin} \]

Here we have too many parallel lines:

\[\exists \text{many classes of } l' \]

\[P \quad l \]
3 Geometries and Their Algebraic Groups

1) Elliptic Geometry

Take K^3 with the usual inner product:

$$v \cdot w = v_1w_1 + v_2w_2 + v_3w_3$$

Form the sphere:

$$X = \{ v \in K^3 : v \cdot v = 1 \}$$

and define a set P of points and a set L of lines as follows:
\[P = \bigoplus 1d\text{-}subspaces\ of\ K^3 \]

\[L = \bigoplus 2d\text{-}subspaces\ of\ K^3 \]

We define the incidence relation "a point \(p \) lies on a line \(l \)" by \(p \subseteq l \). We use the dot product to define distances and angles between points and lines, resp.

The group \(SO(3) \) acts on \(K^3 \) preserving the dot product, and thus it acts on \(P \) and \(L \) preserving distances and angles and also the incidence relation: \(\forall g \in SO(3), \)

\[p \subseteq l \Rightarrow g p \subseteq g l \]

2) Hyperbolic geometry

Give \(K^3 \) the Lorentzian dot product:

\[v \cdot w = -v_1 w_1 - v_2 w_2 + v_3 w_3 \]

so that

\[X = \{ v \in K^3 : v \cdot v = 1 \} \] is a hyperboloid w/ two sheets.

Define sets of points and lines by
\[P = \{ \text{2d-subspaces of } K^2 \text{ with non-empty intersection with } X^2 \} \]
\[L = \{ \text{2d-subspaces of } K^2 \text{ with non-empty intersection with } X^2 \} \]

(Note the new clause compared with elliptic geometry - it's not really new, it was just "invisible" before)

Let

\[O(1,2) = \{ g \in GL(3) : g v \cdot g w = v \cdot w, \forall v, w \in K^3 \} \] where \(\cdot \) is the Lorentzian dot product.

Einstein realized that space and time form \(\mathbb{R}^4 \) with \(O(1,2) \) acting as symmetries.

Let \(SO(1,2) = O(1,2) \cap SL(3) \). Then \(SO(1,2) \) acts on \(K^2 \) preserving the Lorentzian dot product and thus it acts on \(X, P, \) and \(L \). You can define distances between points and angles between lines and \(SO(1,2) \) preserves these.

We say \(p \in P \) lies on a line \(l \in L \) if \(p \in l \), and then \(SO(1,2) \) preserves this incidence relation: \(\forall g \in SO(1,2), p \in l \Rightarrow gp \in g l. \)
3) Euclidean Geometry

Take k^3 with the degenerate dot product:

$$v \cdot w = v_3 w_3$$

Note (looking at the bilinear forms in the different geometries here):

- Elliptic: $+++$
 - $s = 1$
 - $s(x^2 + y^2) + z^2 = 1$

- Euclidean: $00+$
 - $s = \frac{1}{2}$
 - $s = 0$

- Hyperbolic: $-+-$
 - $s = \frac{1}{2}$
 - $s = -1$

As s varies, get a different geometry.

Now $X = \{ v \in k^3 : v \cdot v = 1 \}$ is the set $\{ z^2 = 1 \} \subset \text{two parallel planes}$

So we let

$$P = \{ \text{4d-subspaces of } k^3 \text{ having nonempty intersection with } X \}$$

$$L = \{ \text{2d-subspaces of } k^3 \text{ having nonempty intersection with } X \}$$
The Euclidean group

\[E(3) = \left\{ \left(\begin{array}{cc} R & \nu \\ 0 & 1 \end{array} \right) : R \in SO(2) \text{ and } \nu \in \mathbb{R} \right\} \]

acts on \(\mathbb{R}^3 \) preserving

\[X = \left\{ (x, y, z) \in \mathbb{R}^3 : z = \pm 1 \right\} \]

\[
\left(\begin{array}{c} R \\ 0 \end{array} \right) \cdot \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} R(x) + \nu \\ y \\ 1 \end{array} \right)
\]

So \(E(3) \) preserves the plane \(z = 1 \) and acts on it just as a Euclidean transformation should:

\[
\left(\begin{array}{c} x \\ y \end{array} \right) \mapsto R \left(\begin{array}{c} x \\ y \end{array} \right) + \nu
\]

\(E(3) \) also preserves the plane \(X = -1 \), hence \(X \). We can define distance b/w points and angles b/w lines, and \(E(3) \) preserves these; it also preserves the incidence relation \(p \subseteq \ell \). So the main weird thing about this case is that \(E(3) \) is not the group of all \(\text{det} = 1 \) transformations preserving the degenerate dot product. It's only the subgroup where \(R \in SO(2) \subseteq SL(2) \).

People looked at the 3 geometries and noticed they're all subsumed (as far as incidence relations go) in a single geometry: projective geometry.
4) Projective Geometry

Here we define points and lines in a simpler way:

\[P = \mathop{\Xi} 1d\text{-subspaces of } K^3 \]

\[L = \mathop{\Xi} 2d\text{-subspaces of } K^3 \]

We won't define distances b/w points and angles b/w lines; all we care about is the incidence geometry: we say \(p \in P \) is incident to \(l \in L \) (or \(p \) lies on \(l \)) if \(p \subseteq l \).

Now the symmetry group is all of \(GL(3) \): all invertible linear transfs. Since all of them act on \(P \) and \(L \) preserving the incidence relation:

\[p \subseteq l \Rightarrow gp \subseteq gl \]

Actually, projective geometry goes back at least to the Renaissance painters, who developed perspective.

"Tin Can with Apple"
If we fix any plane $X \subseteq K^3$ not containing the origin, most (but not all) 1d-subspaces of K^3 will intersect X in a single point (some won't intersect at all).

Thus most points $p \in P$ correspond to points of X. The remaining points of P are called "points at infinity." Mathematically, we can do this trick in any dimension: start with K^n, and form a set of points called projective $(n-1)$-space:

$$KP^{n-1} = \{ 1d\text{-subspaces of } K^n \}$$

Most points in KP^{n-1} will intersect the plane

$$X = \{ (x_1, \ldots, x_{n-1}, 1) : x_i \in K \} \text{ in a single point.}$$

So we get a 1-1 correspondence between X and an "open dense" set in KP^2: only 1d-subspaces lying in xy-plane don't correspond to points of X.

Points and lines in either elliptic, hyperbolic or Euclidean geometry give points and lines in projective geometry, and their symmetry groups are all subgroups of its symmetry group $GL(3)$.
Proyective Geometry

Recall that for any field k,

$$K^{n+1} = \prod_{i=1}^{n+1} k$$

Thm: As sets, $K^n \cong K^+ + K^{n-1} + K^{n-2} + \cdots + K^0$.

Here, \cong means there's a bijection and $+$ means disjoint union. These pieces $K^n, K^{n-1}, \ldots, K^0$ are called Schubert cells. This is called a Schubert decomposition.

Pf: Any 1d-subspace of K^{n+1} has the form $\langle (x_1, \ldots, x_{n+1}) \rangle$ with $(x_1, \ldots, x_{n+1}) \neq 0$ - where $\langle \rangle$ means the span - all linear combinations.

If $x_{n+1} \neq 0$, $p = \langle (x_1, x_2, \ldots, x_n, 1) \rangle = \langle (y_1, \ldots, y_n, 1) \rangle$ and this description is unique:

$$\langle (y_1, \ldots, y_n, 1) \rangle = \langle (y'_1, \ldots, y'_n, 1) \rangle$$

$$\Rightarrow y_1 = y'_1, \ldots, y_n = y'_n$$

So we get a bijection b/w K^n and the set of 1d subspaces of K^{n+1} of the form $\langle (x_1, \ldots, x_{n+1}) \rangle$ with $x_{n+1} \neq 0$. If $x_{n+1} = 0$, then p is really a 1d subspace of K^n, where

$$K^n \cong \prod_{i=1}^{n} \{ (x_1, \ldots, x_n, 0) : x_i \in k \}$$
So we get a bijection

\[KP^n \cong K^n + KP^{n-1} \]

By induction, we have

\[KP^n \cong K^n + K^{n-1} + \ldots + K^0. \]

Examples:

1) The projective line \(KP' \) is in 1-1 correspondence with the affine line \(A_k' \) disjoint union \(K^0 \) (here \(A_k' = k' \))

The non-vertical lines have slopes determined by elements of \(K \). So \(KP' \) is \(k \) together with the "point at infinity" \(\infty \) corresponding to the vertical line. So

\[KP' = k + \mathcal{Z} \mathcal{O} \]
2) $\mathbb{R}P^1$ as a set is $\mathbb{R} \cup \mathbb{C} \cup \mathbb{I}$. But as a topological space, it is S^1, the one-point compactification of \mathbb{R}:

![Diagram of S^1](image)

3) $\mathbb{C}P^1$, the complex projective line, is $\mathbb{C} \cup \mathbb{C} \cup \mathbb{I}$. As a space this is S^2, or as a complex variety, the Riemann sphere:

![Diagram of S^2](image)

4) $\mathbb{R}P^2$, the real projective plane, is homeomorphic to $S^2/\mathbb{I}v \sim -v^2$

![Diagram of S^2 with antipodal points identified](image)

or just the northern hemisphere, a disc D^2:

![Diagram of D^2](image)

with $v \sim -v$ for points on the boundary.
This is in bijection with:

This open interval is homeomorphic to \(IR^1 \)

This point is homeomorphic to \(IR^0 \).

This interior is homeomorphic to \(IR^2 \)

\[
\mathbb{RP}^1 \cong IR^2 + IR + \frac{1}{2} \mathbb{RP}^1
\]

"the line at infinity" "the point at infinity"

\[
\mathbb{RP}^2 \cong \mathbb{RP}^1 + \mathbb{RP}^1 + \frac{1}{2} \mathbb{RP}^2
\]

5) Any finite field \(K \) has \(q \) elements, where \(q \) is a prime power

\[
q = p^n
\]

where \(p \) is a prime number and \(n = 1, 2, \ldots \)

Moreover, all fields with \(q \) elements are isomorphic, so we write \(\mathbb{F}_q \) for "the" field with \(q \) elements are isomorphic.

Not canonically isomorphic

When \(p \) is prime, \(\mathbb{F}_p \) is just \(\mathbb{Z}/p\mathbb{Z} \) with the usual \(+, \cdot \).

To get \(\mathbb{F}_{p^n} \) with \(n > 1 \), take \(\mathbb{F}_p \) and throw in all the \(n \) roots of some degree \(n \) polynomial that has no roots in \(\mathbb{F}_p \).
What's the cardinality of \(\mathbb{F}_q P^n \)?

\[
| \mathbb{F}_q P^n | = | \mathbb{F}_q^n + \mathbb{F}_q^{n-1} + \ldots + \mathbb{F}_q^0 | \\
= \sum_{i=0}^{n} | \mathbb{F}_q^i | = q^n + q^{n-1} + \ldots + 1 = \frac{q^{n+1} - 1}{q-1}
\]

is called the q\text{-}integer \(\left[\frac{n+1}{q} \right] \) (since it approaches \(n+1 \) as \(q \to 0 \)).

6) \(\mathbb{F}_2 P^2 \) is called the \underline{Fano plane} - the smallest projective plane.
\(| \mathbb{F}_2 P^2 | = 2^2 + 2 + 1 = 7 \), so it has 7 points.
The Fano plane:

\[\langle e_1, e_2, e_3 \rangle \]

\[\langle e_1 + e_2 \rangle \]

\[\langle e_1 + e_3 \rangle \]

\[\langle e_2 + e_3 \rangle \]

\[\langle e_1 + e_2 + e_3 \rangle \]

\[\langle e_1 \rangle \]

\[\langle e_2 \rangle \]

\[\langle e_3 \rangle \]

e.g., \(\langle e_1, e_2, e_3 \rangle \) all lie on a line since they're in a 2d space \(\langle e_1, e_2 \rangle \).

So \(\mathbb{F}_2 P^2 \) has 7 points and 7 lines.

Thm: In any projective plane \(kP^2 \):

1) For any 2 distinct points \(p, p' \), \(\exists! \) line \(l \) with \(p, p' \subseteq l \).
2) For any 2 distinct lines \(l, l' \), \(\exists! \) point \(p \) with \(p \subseteq l, l' \).

Proof: 1) Given 2 distinct 1d-subspaces of \(K^3 \), \(p \) and \(p' \), the subspace sum \(p + p' = \{ \mathbf{v} + \mathbf{v}' : \mathbf{v} \in p, \mathbf{v}' \in p' \} \) is 2-dim \(l \), so it's a line \(l \) with \(p, p' \subseteq l \) and it's the unique one.

2) Given 2 distinct 2d-subspaces of \(K^3 \), \(l \) and \(l' \), we claim \(l \cap l' \) will be a 1d-subspace \(p = l \cap l' \). This follows from

\[3 = \dim(l + l') = \dim(l) + \dim(l') - \dim(l \cap l') \]

\[= 2 + 2 - \dim(l \cap l'). \]
Thus \(\dim(l \cup l') = 1 \), so \(p = l \cap l' \) is a point on both lines, and we can show it's unique.

\[\square \]

Axiomatic Projective Geometry

Def: An abstract projective plane consists of a set \(P \) of points, a set \(L \) of lines, and an incidence relation \(I \subseteq P \times L \). If \((p, l) \in I \), we say \(p \in l \) or \(p \) lies on \(l \). We demand:

1) For any distinct \(p, p' \in P \), \(\exists! \; l \in L \) with \(p \in l \), \(p' \in l \)

2) For any distinct \(l, l' \in L \), \(\exists! \; p \in P \) with \(p \in l \), \(p \in l' \).

3) Nondegeneracy axiom:

\(\exists \) exist 4 points, no 3 of which lie on the same line.

This is equivalent to the following statement:

3'): \(\exists \) exist 4 lines, no 3 of which contain the same point.

The nondegeneracy eliminates these:

1) \(P = L = \emptyset \)

3)

2) \(P = \emptyset \), \(L = \emptyset \) or \(P = \emptyset \), \(L = 1 \)

4)
