Session 2

Geometries & their algebraic groups

1) Elliptic Geometry.

Take $K^3 (R^3)$ with the usual inner product: $v \cdot w = \sum v_i w_i$.

From the sphere $X \subset \{ v \in K^3 : v \cdot v = 1 \}$

and define a set P of points and L of lines as follows:

$P = \{ 1d \text{ subspaces of } K^3 \}$

$L = \{ 2d \text{ subspaces of } K^3 \}$
and define the incidence relation: " point \(p \) lies on line \(l \) \(\iff \) \(p \in l \).

We use the dot product to define distances between points and angles between lines.

The group \(\text{SO}(3) \) acts on \(\mathbb{R}^3 \) preserving the dot product and also the incidence relation.

\[p \in l \Rightarrow g(p) \in g(l), \quad \forall g \in \text{SO}(3) \]

2) Hyperbolic Geometry

Give \(\mathbb{R}^3 \) the "Lorentzian dot product"

\[V \cdot W = -V_1W_1 - V_2W_2 + V_3W_3 \]

So that:

\[X = \{ V \in \mathbb{R}^3 : V \cdot V < 1 \} \]
and

\(P = \{ 12 \text{ subspaces of } k^3 \text{ with non-empty intersection with } X \} \)

\[L = \{ e_d \} \quad d = 2, 3, \ldots, 9 \]

Let

\[O(1,2) = \{ g \in GL(3) : g \cdot v \cdot g^{-1} = v \cdot w \} \quad (\text{lorentzian dot product}) \]

\[V, W \in k^3 \]

\(SO(1,2) \) preserves the dot product and incidence relation.

3) Euclidean Geometry

Take \(k^3 \) with the degenerate dot product:

\[V \cdot N = V \cdot W \]

\[V, N, W \in k^3 \]
To compare:

- **Elliptic:**
 - Dot product
 - $++$

- **Euclidean:**
 - $00+$

- **Hyperbolic:**
 - $-+$

Now

$X_s \{ \text{vek}^3 : vv=1 \}$

$P \{ \text{all subspaces of} k^3 \text{ having non-empty intersection} \}$

$L, \{ \text{2-d} \}$

What about the symmetry group?

The Euclidean group:

$$E(3) = \left\{ \begin{pmatrix} R & v \\ 0 & 1 \end{pmatrix} : R \in SO(3) \text{ and } v \in k^2 \right\}$$
which preserves X:

\[
\begin{pmatrix}
R & V \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
R(x) + V \\
1
\end{pmatrix}
\]

[can we write $E(3)$ as a quotient group?]

and the distances and angles.

So the main weird difference with this case in that $E(3)$ is not the group of all $\text{det} = 1$ transformations preserving the degenerate dot product.

And Now:

4) Projective Geometry
Points and Lines:

\(P \subset \{12 \text{ subspaces of } k^3 \} \)

\(L \subset \{ 2d \} \)

We can't define distances and angles, but we can define the incidence relation: \(p \in \ell \).

Now the symmetry group is \(GL(3) \).

Projective geometry goes back at least to the Renaissance painters, who developed perspective.

If we fix any plane \(X \subseteq k^3 \) not containing the origin, most (but not all) 12 subspaces of \(k^3 \) will intersect \(X \) in a single point.
Thus most points $p \in \mathbb{P}$ correspond to points of X.

The remaining points of \mathbb{P} are called "points at infinity".

Doing this for any dimension, we get projective $(n-1)$-space.

$k\mathbb{P}^{n-1} = \{1\text{d subspaces of } k^n\}$

Most points in $k\mathbb{P}^{n-1}$ will intersect the plane (for example)

$X = \{(x_0, \ldots, x_{n+1}) : x_i \in k\}$ in a single point.

So we get a 1-1 correspondence between X and an "open dense" (what is the topology? Zariski) set in $k\mathbb{P}^{n-1}$.

Thus points and lines in 3 other geometries are points and line in projective geometry, and their symmetry group is a subgroup of $\text{GL}(2)$.
1) Projective Geometry

Recall: for any field \(k \):

\[kP^n = \{ \text{1d subspaces of } k^{n+1} \} \]

Thin. As sets:

\[kP^n \cong k^n \oplus k^{n-1} \oplus \ldots \oplus k^0 \]

isomorphic

means disjoint union

These pieces \(k^n, k^{n-1}, \ldots \) are called Schubert cells

As this is a Schubert decomposition

Proof: Any 1d subspace of \(k^{n+1} \) has the form

\[\rho = \langle (a_1, \ldots, a_{n+1}) \rangle \cap (a_n, \ldots, a_{n+1}) \neq 0 \]

where \(\langle \cdot \rangle \) means span.
If \(n_{n+1} \neq 0 \)

\[p = \langle \left(\frac{x_{n+1}}{n_{n+1}}, \ldots, \frac{x_n}{n_n}, 1 \right) \rangle = \langle y_1, y_2, \ldots, y_{n+1} \rangle \]

a description which is unique.

So we get a bijection between \(k^n \) and the set of all 1d subspaces of \(k^{n+1} \) of the form \(\langle \langle \alpha_{n+1}, \ldots, \alpha_{n+1} \rangle \rangle \) with \(n_{n+1} \neq 0 \).

If \(n_{n+1} \) then \(p \) is really a 1d subspace of \(k^n \)

\[k^n = \left\{ (x_n, \ldots, x_0) : x \in k^n \right\} \]. So we get the bijection:

\[kP^n \cong k^n + kP^{n-1} \]

by induction:

\[kP^n \cong k^n + k^{n-2} + \cdots + k^0 \]
Examples:

1) $k P = k^1 + k^0$

- line l
- point at ∞

\[\xrightarrow{1-1} \text{correspondence between lines with slope} \neq \infty \text{ and point on line } l \equiv k^1 \]

- line with slope $= \infty \equiv k^0$

2) \mathbb{RP}^1 as a set is $\mathbb{R} + \{\infty\}$. But as a topological space it is S^1, the 1-point compactification of \mathbb{R}.

3) $\mathbb{CP}^1 = \mathbb{C} + \{\infty\}$. As a space this is S^2, or as a complex variety, the Riemann sphere.
4) $\mathbb{R}P^2$ is homeomorphic to $S^2 \setminus \{u \cup v\}$

or to a disc D^2 with $u \cup v$ on boundary.

or to

\[\begin{align*}
\text{the interior } &\subseteq \mathbb{R}^2 \\
\text{homeo to } &\mathbb{R} (\text{line at } \infty) \\
\text{homeo to } &\mathbb{R}^0
\end{align*} \]

$\Rightarrow \mathbb{R}P^2 \cong \mathbb{R}^2 + \mathbb{R} + \{\infty\}$

$\mathbb{R}P^1$

5) Any finite field k has q elements where q is a prime power:

$q = p^m$ where p is prime and $m \in \mathbb{N}$.

Moreover all fields with q elements are isomorphic, so we write \mathbb{F}_q for "the" field with q elements.
If \(p \) prime is just \(\mathbb{Z}/p\mathbb{Z} \) with usual +.

To get \(\mathbb{F}_p^m \) with \(n > 1 \), we can take \(\mathbb{F}_p \) & throw in all \(m \) roots of some degree-\(m \) polynomial that has no roots in \(\mathbb{F}_p \).

What's the cardinality of \(\mathbb{F}_q P^n \)?

\[
|\mathbb{F}_q P^n| = |\mathbb{F}_q^n + \mathbb{F}_q^{n-1} + \cdots + \mathbb{F}_q^0|
\]

\[
= |\mathbb{F}_q^n| + |\mathbb{F}_q^{n-1}| + \cdots
\]

\[
= q^n + q^{n-1} + \cdots + 1
\]

\[
= \frac{q^{n+1} - 1}{q - 1}
\]

which is called the \(q \)-integer: \([n+1]_q\) (it approaches \(n+1 \) as \(q \to 1 \)).
6) $\mathbb{F}_2 P^2$ is called the "Fano plane," the smallest projective plane. $|\mathbb{F}_2 P^2| = 2^2 + 2 + 1 = 7$

Diagram:

- $e_1 + e_3$
- $e_2 + e_3$
- $e_1 = (1,0,0)$
- $e_2 = (0,1,0)$
- $e_3 = (0,0,1)$

Diagram 2:

- $\langle e_1 + e_3 \rangle$
- $\langle e_2 + e_3 \rangle$
- $\langle e_1, e_3 \rangle$
- $\langle e_2, e_3 \rangle$
- $\langle e_1, e_2 \rangle$
- $\langle e_1, e_3 \rangle$
- $\langle e_2, e_3 \rangle$

Text:

In \mathbb{F}_2^3, what are the 1D subspaces? What are the lines in the following figure?

Text 2:

For any two points, there is a line.

For any two lines, they intersect at one point.

Thm. In any projective plane kP^2:

1) For any 2 distinct points p and p', there is a line through p with $p', p \in k$.

2) For any 2 distinct lines l, l', there is a point p with $p \in l, p \in l'$.

(13)
Proof

1) Given 2 distinct 1d subspaces of k^3, p & p', the subspace sum $p + p'$ is $\{v + v', v \in p, v' \in p'\}$ is 2-dim, so it's a line with $p, p' \subset k$ and it is unique since...

2) Given 2 distinct 2d subspaces $l, l' \subset k^3$ we claim $l \cap l'$ will be a line subspace $p \subset l \cap l'$, and the clearly $p \subset l, l'$.
Def. An abstract projective plane consists of a set of points \(P \), a set of lines \(L \), and an incidence relation \(I \subseteq P \times L \). If \((p, e) \in I\) we say \(p \text{ lies on } e \).

Now we demand:

1) For any distinct \(p, p' \in P \) \(\exists! \, e \in L \) \(p \text{ lies on } e, p' \text{ lies on } e \)

2) For any distinct \(e, e' \in L \) \(\exists! \, p \in P \) \(p \text{ lies on } e, p \text{ lies on } e' \)

3) Non-degeneracy axiom:

V1. There exist 4 points, no 3 of which lie on the same line.

V2. There exist 4 lines, no 2 of which contain the same point.

The two versions are equivalent.
The non-degeneracy eliminates:

1) \(P = L = \emptyset \)

2)

3)

4)

5)

6)

7)

with these axioms, do projective six planes come from a field?
Last time, "Schubert cell" should have been "Bruhat cell".

A Bruhat cell is isomorphic to k^n; the corresponding Schubert cell is the closure of the Bruhat cell.

So if $k=\mathbb{R}$, Bruhat cells are open n-balls & Schubert cells are closed n-balls.

Projective Planes & Axiomatic Projective geometry

"Around 400 AD, Pappus wrote about Euclid's "Porisms".

Thm. Pappus's Hexagon theorem: if k is any field and we have this configuration of points & lines in kP^2,

then points a, b, and c lie on a line.

Proof: See Wikipedia.
In fact:

Thus, an abstract projective plane is isomorphic to the plane \mathbb{P}^2 coming from some field iff Pappus' hexagon theorem holds in this abstract projective plane.

Klein Geometry

Any kind of (highly symmetrical) geometry corresponds to a group G (the symmetry group of the geometry).

There will be various sorts of "figures" (e.g., points, lines, circles, triangles, ...) and G acts on each of these sets. In fact, we demand each set is a "homogeneous space" for G.

Def. Action of group G on a set X: $\alpha: G \times X \to X$

$$\alpha(g, x) = g \cdot x$$

obeying:

* Associative law $g(hx) = (gh) \cdot x$ \hspace{1cm} \forall g, h \in G, \forall x \in X$

* Identity law $1 \cdot x = x$ \hspace{1cm} \forall x \in X$
We call this an action of G on X, or a G-set, or a G-space.

Def. An action of G on X is transitive if \(\forall y \in X, \exists g \in G : gx = y \)

A transitive G-set is called a homogeneous G-space.

Example: if $G = E(n)$ (the Euclidean group) the the set of points $P = \mathbb{R}^n$ in a homogeneous G-space, as is the set of lines L.

The same holds for points & lines in the other geometries we've discussed:

- elliptic $G = SO(3)$
- hyperbolic $G = SO(1,2)$
- projective $G = GL(n)$

Thm. If G is a group & X is a transitive G-set, for any $x \in X$

there is an isomorphism (a bijection) $\phi : G/G_x \rightarrow X$

where G_x is the stabilizer of $x \in X$: $G_x = \{ g \in G : gx = x \}$.

and $\phi([g]) = gx$.
Proof: 1) \(\phi \) is well defined: if \([g'] = [g] \) \((g'vgh \text{ for some } h \in G) \)

\[\phi([g']) = \phi([g]) \] since \(gx, ghx = gx \)

2) and also 1-1: if \(g(x, g(x)) \Rightarrow [g'] = [g] \)

3) and also onto: given any \(k \in X \), transitivity implies \(\exists g \in G \) s.t. \(gx = x' \Rightarrow \phi([g]) = x' \)

Note: the empty set always can be made into a \(G \)-set in one way, and this action is transitive. But \(\phi \neq G/H \) (for some \(H \)).

So did the above theorem go wrong? No. Since \(\exists x \in X \)

Example: 1) Euclidean plane: \(G \cong E(2) \)

the subgroup \(H = \left\{ \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \right\} \)

stabilizes a point, namely

\[p = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} \]
Here $H = \text{SO}(2) \cdot \text{SO}$ in Euclidean geometry:

$$P = E(2)/\text{SO}(2) \sim \text{really } H$$

2) G, $E(2)$, translations along a line fix that line.

So let $H' = \langle \begin{pmatrix} \ast & \ast & \ast \\ \ast & 1 & \ast \\ \ast & \ast & 1 \end{pmatrix} \rangle$

It stabilizes:

$$\mathcal{L} = \langle (0), (1) \rangle$$

but so does the 180° rotation $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

So $G \leq \langle H', \text{ 180 } \text{ rotation} \rangle \Rightarrow E(2) \, \cong \, L \left[\text{the space of all lines} \right]$ \frac{\text{by } G}{G}$

also $G/\langle H' \rangle$ would be the space of oriented lines.
In Klein geometry, we pick a group \(G \) and say each subgroup \(H \subseteq G \) determines a "type of figure," with \(G/H \) being the set of figures of that type.

We can define incidence relations between two types of figures to be \(G \)-invariant relations.

Given two types of figures: \(X = G/H \) and \(X' = G/H' \), a relation between these is a subset \(R \subseteq X \times X' \).

\(R \) is \(G \)-invariant if:

\[
(x, x') \in R \Rightarrow (gx, gx') \in R \quad \forall g \in G
\]

E.g., in Euclidean geometry, "point on line" defines an \(E(1) \)-invariant relation: \(I \subseteq P \times L \).

* Starting from a group, we can work out all its subgroups & all the invariant relations on the resulting transitive \(G \)-sets.
According to Klein, a group gives a geometry.

So let's try: \(G, \text{GL}(n) \)

Different types of geometrical figure in projective geometry correspond to different subgroups of \(\text{GL}(n) \).

Here are some fundamental kind of figures:

Def. Let the Grassmannian \(\text{Gr}(n,j) \) \((1 \leq j \leq n-1)\) be the set of all \(j \)-dimensional linear subspaces of \(k^n \).

Examples:
- \(\text{Gr}(n,1) = kP^{n-1} = \{ \text{points of } kP^{n-1} \} \)
- \(\text{Gr}(n,2) = \{ \text{lines in } kP^{n-1} \} \)
- \(\text{Gr}(n,3) = \{ \text{planes in } kP^{n-1} \} \)
- \(\text{Gr}(n,4) = \{ (j-1) \text{-planes in } kP^{n-1} \} \)
- \(\text{Gr}(n,n-1) = \{ \text{hyperplanes in } kP^{n-1} \} \)
GL(n) acts on each Gr(n,j) via:

\[GL = \{ g \in L : v \in L \} \leq Gr(n,j) \]

and they all are homogeneous spaces of GL(n):

any \(L \leq Gr(n,j) \) has a basis \(v_1, \ldots, v_j \in k^n \) & similarly \(L' \leq Gr(n,j) \) has basis \(v'_1, \ldots, v'_j \in L' \)

and we can find \(g \in GL(n) \) s.t. \(g v_i = v'_i \) so that \(g L = L' \)

thus by our theorem last time \(Gr(n,j) = GL(n)/P_{nj} \)

where \(P_{nj} \) is the subgroup that fixes a chosen \(L \in Gr(n,j) \)

The subgroups \(P_{nj} \) are "maximal parabolic" subgroups of \(GL(n) \).

Indeed, any (linear) algebraic group \(G \) will have maximal parabolic subgroups that fix the "nicest" types of figures in its geometry.

To study \(P_{nj} \) choose a nice j-dim subspace of \(k^n \):

\[L = \{ (x_1, \ldots, x_j, 0, 0, \ldots, 0) \in k^n \} \]
8. define:

\[\text{Proj} = \{ g \in \text{GL}(3) : gL = L \} \]

What's it like?

Examples.

\[P_{3,1} = \text{subgroup of } \text{GL}(3) \text{ that fixes a point in the projective plane.} \]

\[
\begin{pmatrix}
* & * & * \\
0 & * & * \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
* \\
* \\
0
\end{pmatrix}
= \begin{pmatrix}
* \\
* \\
0
\end{pmatrix}
\]

This matrix fixes \(L = P_{3,1} \).

Any vector \(v \in L \) looks like this, where \(\ast \) means an arbitrary element of the field.

\[P_{3,2} = \text{subgroup of } \text{GL}(3) \text{ that fixes a line in the projective plane.} \]

\[
\begin{pmatrix}
* & * & * \\
* & * & * \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
* \\
* \\
*
\end{pmatrix}
= \begin{pmatrix}
* \\
* \\
*
\end{pmatrix}
\]

\[= P_{3,2} \]

In fact, \(P_{3,2} \cong P_{3,1} \) as a group but they are not conjugate in \(\text{GL}(3) \).
\[P_{n,1}: \]
\[
4-1 \left\{ \begin{pmatrix} x & x & \cdots & x \\ 0 & x & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & 0 \end{pmatrix} \right) \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ \vdots \\ \vdots \\ 0 \end{pmatrix}
\]

\[P_{n,2}: \]
\[
4-2 \left\{ \begin{pmatrix} x & x & \cdots & x \\ 0 & x & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & 0 \end{pmatrix} \right) \begin{pmatrix} x \\ \vdots \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ \vdots \\ \vdots \\ 0 \end{pmatrix}
\]

\[P_{n,3} \]
\[
4-3 \left\{ \begin{pmatrix} x & x & \cdots & x \\ 0 & x & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & & \cdots & 0 \end{pmatrix} \right) \begin{pmatrix} x \\ \vdots \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ \vdots \\ \vdots \\ 0 \end{pmatrix}
\]

Theorem:
\[
P_{n,j} = \left\{ \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix} : X, Y, Z \text{ are arbitrary matrices of the correct shape} \right\}
\]

\[\text{if } k=\mathbb{R}, \text{ any linear algebraic group } G \text{ is a manifold, and if } H \subseteq G \text{ is algebraic as well then } G/H \text{ is also a manifold if } \dim(G/H) = \dim G - \dim H \]
For any field, an (linear) algebraic group G is an (affine) algebraic variety, and if $H \subset G$ is algebraic as well, then G/H is also an algebraic variety (not necessarily affine) and
\[\dim(G/H) = \dim(G) - \dim(H) \]

Thm.
\[\dim(\text{Gr}(n,j)) = j(n-j) \]
from the form of $P_{n,j}$
\[\dim(P_{n,j}) = n^2 - (n-j)j \]
and since $\text{Gr}(n,j) \cong \frac{P_{n,j}}{P_{n,j}}$, we have
\[\dim(\text{Gr}(n,j)) = n-j \]

Moreover, $\dim(\text{Gr}(n,j)) = \dim(\text{Gr}(n,n-j))$ and in fact $\text{Gr}(n,j) \subseteq \text{Gr}(n,n-j)$ since using an inner product we get a 1-1 & onto map
\[L \rightarrow L^* \]
which is called duality in projective spaces.
a Pseudo-Pascal's triangle for $d_{n,j} := \dim (Gr(n,j))$

But this is just the multiplication table!!

\[
\begin{align*}
 d_{1,0} &= 1 \\
 d_{2,0} &= 2 \\
 d_{2,1} &= 2 \\
 d_{3,0} &= 3 \\
 d_{3,1} &= 4 \\
 d_{3,2} &= 3 \\
 d_{4,0} &= 4 \\
 d_{4,1} &= 6
\end{align*}
\]

Pascal's triangle shows up when we count the number of points in $Gr(n,j)$ when $k = \mathbb{F}_q$. We'll get the "q-deformed" Pascal's triangle.

Remember $kP^n = k^n + k^{n-1} + \cdots + k^0$

So if $k = \mathbb{F}_q$:

\[
|kP^n| = \frac{q^{n+1} - 1}{q-1} = [n+1]_q \quad \text{(called $n+1$-th q-integer)}
\]

Also: $kP^{n-1} = Gr(n,1)$. How does $|Gr(n,1)| = [n]_q$ generalize to other Grassmannians?
Def. The q-factorial $[n]_q!$ is given by:

$$[n]_q! = [n]_q [n-1]_q \cdots [1]_q$$

and the q-binomial coefficient $\left(\begin{array}{c} n \\ j \end{array}\right)_q$ is given by:

$$\left(\begin{array}{c} n \\ j \end{array}\right)_q = \frac{[n]_q!}{[j]_q! [n-j]_q!}$$

Thm. if $k = \mathbb{F}_q$ then $|\text{Gr}(W, J)| = \left(\begin{array}{c} n \\ j \end{array}\right)_q$

Note: $\left(\begin{array}{c} n \\ j \end{array}\right)$ counts the number of j-element subsets of an n-element set, while $\left(\begin{array}{c} n \\ j \end{array}\right)_q$ counts the number of j-dimensional subspaces of a n-dimensional vector space over \mathbb{F}_q.

So in some mysterious way a vector space over "the field with an element" (\mathbb{F}_q) is just a finite set!"