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Chemistry is fundamentally quantum-mechanical. But the master
equation describes reactions using classical probability theory.

We usually compute a probability p ∈ [0, 1] from an amplitude
ψ ∈ C as follows:

p = |ψ|2.

We’d need to use this idea to derive the master equation as an
approximation to quantum chemistry.

That’s not what I’m going to do!

Instead, I’ll show how the master equation fits into a strange but
thorough-going analogy between probabilities and amplitudes:

p ∼ ψ



Suppose we have a system with n possibilities:

X = {1, . . . , n}

In quantum theory we consider quantum states:

ψ : X → C

with ∑
i∈X
|ψi |2 = 1

In probability theory we consider stochastic states:

ψ : X → R

with ∑
i∈X

ψi = 1 and ψi ≥ 0



A linear operator U : Cn → Cn that maps quantum states to
quantum states is called unitary.

A linear operator U : Rn → Rn that maps stochastic states to
stochastic states is called stochastic.

Concretely, U is unitary iff∑
i

|Uij |2 = 1

and stochastic iff ∑
i

Uij = 1 and Uij ≥ 0



A linear operator H : Cn → Cn for which exp(−itH) is unitary for
all t ∈ R is called self-adjoint.

A linear operator H : Rn → Rn for which exp(tH) is stochastic for
all t ∈ [0,∞) is called infinitesimal stochastic.

Concretely, H is self-adjoint iff

Hji = Hij

and infinitesimal stochastic iff∑
i

Hij = 0 and Hij ≥ 0 if i 6= j



If H is self-adjoint, we can describe time evolution of quantum
states using Schrödinger’s equation:

d

dt
ψ(t) = −iHψ(t)

If H is infinitesimal stochastic, we can describe time evolution of
stochastic states using the master equation:

d

dt
ψ(t) = Hψ(t)

In both cases, let’s call H the Hamiltonian.

Unitary operators have unitary inverses; stochastic operators rarely
have stochastic inverses! So, we only evolve forwards in time in
stochastic mechanics.



Suppose we have a finite set S of species. An element κ ∈ NS is a
complex: it says how many items of each species we have.

In quantum mechanics, let ψκ ∈ C be the amplitude that we have
exactly κi items of the ith species for each i ∈ S . We thus have a
function ψ : NS → C, which is a quantum state if∑

κ∈NS

|ψκ|2 = 1

We define Fock space to consist of functions ψ : NS → C with∑
κ∈NS

|ψκ|2 <∞

We describe time evolution by d
dtψ(t) = −iHψ(t).



In stochastic mechanics, let ψκ be the probability that we have
exactly κi items of the ith species for each i ∈ S .

Thus we have a function ψ : NS → R, which is a stochastic state
if ∑

κ∈NS

ψκ = 1 and ψκ ≥ 0

We define the stochastic Fock space to consist of functions
ψ : NS → R with ∑

κ∈NS

|ψκ| <∞

We describe time evolution by
d

dt
ψ(t) = Hψ(t).



In quantum mechanics, we often build the Hamiltonian H on Fock
space from ‘annihilation’ and ‘creation’ operators. We can do the
same in stochastic mechanics!

Let’s see how to define H in this example from biology:

fission: amoeba → amoeba + amoeba

competition: amoeba + amoeba → amoeba



Suppose ψn is the probability of having n amoebas. We can
summarize this information in a power series:

Ψ(z) =
∞∑
n=0

ψnz
n

The creation operator a† creates an amoeba:

a†Ψ = zΨ

The annihilation operator a destroys one:

aΨ =
d

dz
Ψ

Note that azn = nzn−1. The idea: there are n amoebas to choose
from!



The commutator of operators A,B is defined by

[A,B] = AB − BA

The annihilation and creation operators obey

[a, a†] = 1

This noncommutativity is fundamental to quantum mechanics.
Does it make sense for classical objects if we use probabilities
instead of amplitudes?

Yes!

Let’s see how it works.



We would like a Hamiltonian for a process that destroys k
amoebas and creates j of them:

The obvious guess is a†
j
ak . But this is not infinitesimal stochastic!

The right answer has a ‘correction term’:

a†
j
ak − a†

k
ak



For example, H = a† − 1 describes the random ‘creation’ of
amoebas.

Then the master equation has this solution:

Ψ(t) = et(z−1)Ψ(0)

Check:
d

dt
Ψ(t) =

d

dt
et(z−1)Ψ(0)

= (z − 1)et(z−1)Ψ(0)

= (a† − 1)Ψ(t)

= HΨ(t)



Does this solution do what we want?

Ψ(t) = et(z−1)Ψ(0)

If we start with the ‘vacuum state’ Ψ(0) = 1, where there are no
amoebas, at time t we have

Ψ(t) = et(z−1) = e−t
∑
n

tn

n!
zn

so the probability of having n amoebas is e−t t
n

n! . This is just what
we expect: a Poisson process.



The reaction network we care about has two reactions: fission and
competition:

So, if these have rate constants α and β, we get

H = α(a†
2
a− a†a) + β(a†a2 − a†

2
a2)



We can express the time evolution operator

exp(tH) = 1 + tH +
t2

2!
H2 + · · ·

as a sum over Feynman diagrams:



All this works quite generally. Suppose we have k different species.
Write

S = {1, . . . , k}

A typical element of the stochastic Fock space can be written as

Ψ =
∑
κ∈Nk

ψκ zκ1 · · · zκk

where ψκ ∈ R and ∑
κ

|ψκ| <∞



We have annihilation and creation operators on the stochastic
Fock space:

aiΨ =
∂Ψ

∂zi
a†i Ψ = ziΨ

More generally, for any complex κ we have operators that
annihilate or create that whole complex:

aκ = aκ1
1 · · · a

κk
k a†

κ
= a†1

κ1 · · · a†k
κk



Suppose we have a set T of reactions where the reaction τ ∈ T
turns the complex s(τ) into the complex t(τ). Suppose the
reaction τ has rate constant r(τ). Then our Hamiltonian is a sum
over reactions:

H =
∑
τ∈T

r(τ)
(
a†

t(τ) − a†
s(τ)
)
as(τ)

You can check that
d

dt
ψ(t) = Hψ(t)

gives the chemical master equation you know and love!



In quantum mechanics, the basic structure on states is the inner
product, which for Cn is

〈ψ, φ〉 =
∑
i

ψiφi

In stochastic mechanics, the corresponding structure on Rn is

〈ψ〉 =
∑
i

ψi



In quantum mechanics, the expected value of a linear operator
O : Cn → Cn in the quantum state ψ is

〈ψ,Oψ〉

In stochastic mechanics, the expected value of O : Rn → Rn in
the stochastic state ψ is

〈Oψ〉

This is most familiar when O is diagonal: if Oij = Oiδij then

〈Oψ〉 =
∑
i

Oiψi



In either quantum or stochastic mechanics we can define number
operators on Fock space:

Ni = ai
†ai

The expected value of Ni in a state Ψ is the expected number of
items of the ith species.

In the quantum case this means that

〈Ψ,NiΨ〉 =
∑
κ

κi |ψi |2

In the stochastic case,

〈NiΨ〉 =
∑
κ

κiψκ



In quantum mechanics, the expected value of any operator O
changes as follows:

d

dt
〈Ψ(t),OΨ(t)〉 = −i〈Ψ(t), [O,H]Ψ(t)〉

when Ψ(t) obeys Schrödinger’s equation.

In stochastic mechanics, it changes as follows:

d

dt
〈OΨ(t)〉 = 〈[O,H]Ψ(t)〉

when Ψ(t) obeys the master equation.



Using the Hamiltonian we’ve seen for a chemical reaction network:

H =
∑
τ∈T

r(τ)
(
a†

t(τ) − a†
s(τ)
)
as(τ)

we can use everything I’ve said so far to prove

d

dt
〈NΨ(t)〉 =

∑
τ∈T

r(τ) (s(τ)− t(τ))
〈
Ns(τ) Ψ(t)

〉
where we define the falling power of a number operator by

N
p

i = Ni (Ni − 1) · · · (Ni − p + 1)

or for any complex κ,

Nκ = N
κ1

1 · · ·N
κk

k



In a suitable large-number limit,

d

dt
〈NΨ(t)〉 =

∑
τ∈T

r(τ) (s(τ)− t(τ))
〈
Ns(τ) Ψ(t)

〉
reduces to the rate equation for our chemical reaction network.

This is not really new. However, what’s nice is that this
‘large-number limit’ is precisely analogous to the classical limit of
quantum mechanics: the limit where ~→ 0.

For details see:

I John Baez and Jacob Biamonte, A Course on Quantum
Techniques for Stochastic Mechanics.

I John Baez and Arjun Jain, The large-number limit for
reaction networks.
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