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Gauge Theory

Ordinary gauge theory describes how point particles
transform as they move along paths:
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It is natural to assign a group element to each path:
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Why?



Composition of paths corresponds to multiplication:
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Reversing the direction of a path corresponds to taking
inverses:
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The associative law makes parallel transport along a
triple composite unambiguous:
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So: the topology dictates the algebra!

The electromagnetic field is described using the group
U(1). Other forces are described using other groups.



Higher Gauge Theory

Higher gauge theory describes not just how point
particles but also how 1-dimensional objects transform
as we move them. This leads to the concept of a
2-group.

A 2-group has objects:
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and also morphisms:
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We can multiply objects:
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multiply morphisms:
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and also compose morphisms:
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Various laws should hold... all obvious from the pictures!



Each operation has a unit and inverses. Each operation
is associative, so these are well-defined:
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Finally, the interchange law, holds, meaning this is
well-defined:

•
��

//��
BB

��

•
��

//��
BB

��

•

That’s all a 2-group is.



Crossed Modules

A 2-group G is determined by the quadruple (G,H, t, α)
consisting of:

• the group G consisting of all objects of G:
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• the group H consisting of all morphisms of G with
source 1:
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• the homomorphism t : H → G sending each element
of H to its target:
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• the action α of G on H defined by:

α(g)(h) = •
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For any 2-group G, the quadruple (G,H, t, α) satisfies
two equations making it a crossed module.
Conversely, any crossed module gives a 2-group.



Examples of 2-Groups

• Any group G gives a 2-group with H = 1. So:

ordinary gauge theory ⊆ higher gauge theory

In ordinary gauge theory, the gauge field is a
connection: locally a g-valued 1-form A. We cleverly
integrate this along paths to get elements of G:
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• Any abelian 2-group H gives a 2-group with G = 1.

If we take H = U(1), we get the 2-group for 2-form
electromagnetism. Here the gauge field is locally a
2-form B. The action is∫

M
tr(G ∧ ∗G)

where G = dB. Extremizing the action, we get

∗d ∗ G = 0

which looks just like the vacuum Maxwell equation!

We can integrate B over surfaces to get elements of H :
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• Any representation α of a group G on a vector space
H gives a 2-group with trivial t : H → G.

If H = g we get the tangent 2-group of G. This is
the 2-group for BF theory in 4 dimensions. Here the
fields are a g-valued 1-form A and an h-valued 2-form
B. The action is ∫

M
tr(B ∧ F )

where M is a 4-manifold. Extremizing the action, we get
equations of motion

dAB = 0, F = 0.

The second implies that we get well-behaved parallel
transport over surfaces!



Theorem. If M is a manifold and (G,H, t, α) is a Lie
crossed module, then smooth maps sending paths and
surfaces in M to objects and morphisms in the corre-
sponding 2-group:
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compatible with composition and multiplication, are in
1-1 correspondence with pairs consisting of

• a g-valued 1-form A on M

• an h-valued 1-form B on M

satisfying the fake flatness condition:

F + dt(B) = 0.



• Any group G gives a 2-group where H = G, t : H → G
is the identity, and the action α of G on H is given by
conjugation.

This is the 2-group for BF theory with cosmologi-
cal term in 4 dimensions. Here the fields are a g-valued
1-form A and a g-valued 2-form B. The action is∫

M
tr(B ∧ F +

1

2
B ∧ B)

Extremizing this, we get equations of motion

dAB = 0, F + B = 0.

Since F + dt(B) = 0, we again get well-behaved
parallel transport over surfaces!



• Our last example is related to the String group.

Suppose G is a compact, simply-connected, simple Lie
group — for example SU(n) or Spin(n). Then

π3(G) = Z

and the topological group obtained by killing the third
homotopy group of G is called Ĝ.

When G = Spin(n), Ĝ is called String(n):

String(n) → Spin(n) → SO(n) → O(n).

To define spinors on M , we need to pick a spin structure.
To define spinors on the free loop space LM , we need
to pick a ‘string structure’. So, getting our hands on
String(n) is important — but tricky!



For any k ∈ Z there is a 2-group called PkG. We will

use this to construct Ĝ.

An object of PkG is a smooth path f : [0, 2π] → G
starting at the identity. A morphism from f1 to f2 is an
equivalence class of pairs (D,λ) consisting of a disk D
going from f1 to f2 together with λ ∈ U(1):
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What’s the equivalence relation?



Any two such pairs (D1, λ1) and (D2, λ2) have a 3-ball
B whose boundary is D1∪D2. The pairs are equivalent
when

exp

(
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∫

B
ν

)
= λ2/λ1

where ν is the left-invariant closed 3-form on G with

ν(x, y, z) = 〈[x, y], z〉

and 〈·, ·〉 is the Killing form, normalized so that
[ν] generates H3(G, Z).

Theorem. The morphisms in PkG starting at the
constant path form the level-k central extension of the
loop group ΩG:

1 // U(1) // Ω̂kG
// ΩG // 1



So, the 2-group PkG corresponds to the crossed module

(PG, Ω̂kG, t, α) where:

• PG consists of paths in G starting at the identity.

• Ω̂kG is the level-k central extension of the loop group
ΩG.

• t : Ω̂kG → PG is given by:

1 // U(1) // Ω̂kG
//

t ##G
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• α is ‘conjugation’ of elements of Ω̂kG by paths in PG.
One must prove this is well-defined!



The nerve of a topological 2-group G is a simplicial
topological group. When we take its geometric
realization we get a topological group |G|.

Theorem. When k = ±1,

|PkG| ' Ĝ.

So, when G = Spin(n), |PkG| is the string group!



QUESTION: Which higher gauge theory uses the
2-group PkG as its ‘gauge 2-group’?

POSSIBLE ANSWER: Chern–Simons theory in 3
dimensions! This is normally viewed as an ordinary
gauge theory, but we may be able to see it as a higher
gauge theory with this gauge 2-group.

For more detail, see the work of Urs Schreiber online at
the n-Category Café.



The M-theory 3-Group?

String theory involves 1-dimensional objects — strings!
Higher gauge theory with 2-groups describes the parallel
transport of 1-dimensional objects. So, we should not
be surprised to find some 2-groups (like PkG) that are
related to string theory.

M -theory involves 2-dimensional objects — 2-branes!
Higher gauge theory with 3-groups should describe the
parallel transport of 2-dimensional objects. So, we should
not be surprised to find some 3-groups that are related
to M -theory.



QUESTION: Which 3-groups – or 3-supergroups –
show up in M -theory?

POSSIBLE ANSWER: M -theory is the mysterious
quantized version of 11d supergravity. 11d supergravity
involves these fields:

• a 1-form valued in the 11d Poincaré Lie superalgebra

• a 3-form

So, maybe it is a higher gauge theory whose 3-supergroup
has ‘Lie 3-superalgebra’ with:

• the 11d Poincaré Lie superalgebra as objects

• {0} as morphisms

• R as 2-morphisms



In fact the concept of Lie 3-superalgebra is understood
— and a nontrivial one like this exists!

For this and other reasons, it seems 11d supergravity is a
higher (super)gauge theory. But, much more work needs
to be done to understand this. The Lie 3-supergroup for
M -theory seems to involve extra ingredients — like the
exceptional group E8.

For more detail see the work of Castellani, D’Auria and
Fré, Aschieri and Jurčo, and Urs Schreiber.


