CATEGORIES IN CONTROL

John Baez
Canadian Mathematical Society Winter Meeting
5 December 2015
To understand ecosystems, ultimately will be to understand networks. — B. C. Patten and M. Witkamp

We need a good mathematical theory of networks.
The category with vector spaces as objects and linear maps as morphisms becomes symmetric monoidal with the usual \otimes.

In quantum field theory, Feynman diagrams are pictures of morphisms in this symmetric monoidal category:
The category with vector spaces as objects and linear maps as morphisms becomes symmetric monoidal with the usual \otimes.

In quantum field theory, Feynman diagrams are pictures of morphisms in this symmetric monoidal category:

![Feynman diagram](image)

But the category of vector spaces also becomes symmetric monoidal using \oplus. This is important in **control theory**: the art of getting systems to do what you want. Control theorists use ‘signal-flow diagrams’ to describe morphisms in this symmetric monoidal category.
For example, an upside-down pendulum on a cart:

has the following signal-flow diagram...
To formalize this, think of a signal as a smooth real-valued function of time:

\[f : \mathbb{R} \to \mathbb{R} \]

We can multiply a signal by a constant and get a new signal:
We can also integrate a signal:
Electrical engineers use Laplace transforms to write signals as linear combinations of exponentials:

\[f(t) = e^{-st} \quad \text{for some } s > 0 \]

Then they define

\[(\int f)(t) = \frac{e^{-st}}{s} \]
Electrical engineers use Laplace transforms to write signals as linear combinations of exponentials:

\[f(t) = e^{-st} \quad \text{for some } s > 0 \]

Then they define

\[(\int f)(t) = \frac{e^{-st}}{s} \]

This lets us think of integration as a special case of scalar multiplication!

So, signal-flow diagrams are a tool for linear algebra over \(k = \mathbb{R}(s) \), the field of rational functions in one real variable \(s \).
Let us work over any commutative rig k. We start by using signal-flow diagrams with m inputs and n outputs:

![Signal-flow diagram]

to describe k-linear maps

$$F : k^m \rightarrow k^n$$
These signal flow diagrams are pictures of morphisms in FinVect_k, the strict symmetric monoidal category with:

- one object k^n for each $n \in \mathbb{N}$
- k-linear maps $F: k^m \to k^n$ as morphisms

and with tensor product given by direct sum.

“FinVect_k” is abuse of notation: we’re talking about finitely generated free k-modules, which are finite-dimensional vector spaces when k is a field.
FinVect}_k is generated as a symmetric monoidal category by one object, \(k \), and 5 kinds of morphisms:

1. **Scalar multiplication** by \(c \in k \)

\[
c : k \rightarrow k
\]
\[
x \mapsto cx
\]
2. **Addition:**

\[
+ : \quad k^2 \quad \rightarrow \quad k \\
(x, y) \quad \mapsto \quad x + y
\]
3. Zero:

\[0: \{0\} \rightarrow k \]

\[0 \Leftrightarrow 0 \]
4. Duplication:

\[\Delta: \quad k \rightarrow k^2\]
\[x \leftrightarrow (x, x)\]
5. Deletion:

\[!: k \rightarrow \{0\}\]

\[x \mapsto 0\]
We know all the relations these generating morphisms obey:

Theorem (Baez–Erbele, Wadsley–Woods)

Finite-dimensional k-modules is the PROP for bicommutative bimonoids over k.

This a terse way to list relations, and to say that these imply all the relations.

In detail...
(1)–(3) Addition and zero make k into a commutative monoid:

(4)–(6) Duplication and deletion make k into a cocommutative comonoid:
The monoid and comonoid structures on k fit together to form a bicommutative bimonoid:

\[(7)\text{–}(10)\]

\[\begin{align*}
\begin{array}{c}
\quad\
\end{array}
\end{align*} = \begin{array}{c}
\quad\
\end{array} \quad \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array}
\]

\[\begin{align*}
\begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array}
\]

\[\begin{align*}
\begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array}
\]

\[\begin{align*}
\begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array} = \begin{array}{c}
\quad\
\end{array}
\]
What is a bicommutative bimonoid “over k”?

For any bicommutative bimonoid A in a symmetric monoidal category, the bimonoid endomorphisms $f : A \to A$ can be added and composed, giving a rig $\text{End}(A)$.

A bicommutative bimonoid over k is one equipped with a rig homomorphism

$$\Phi : k \to \text{End}(A)$$
(11)–(14) Saying that Φ sends each $c \in k$ to a bimonoid homomorphism means that these extra relations hold:
(15)–(18) Saying that Φ is a rig homomorphism means that these extra relations hold:

\[
\begin{align*}
bc &= c \quad & b+c &= b \quad & 1 &= 0 \\
\end{align*}
\]

So, these are all the relations in FinVect_k.
But control theory also needs more general signal-flow diagrams with ‘feedback loops’:
Feedback is the most important concept in control theory: letting the output of a system affect its input. For this we should let wires 'bend back':

These aren’t linear maps — they’re linear relations!
A linear relation $F: U \leadsto V$ from a vector space U to a vector space V is a linear subspace $F \subseteq U \oplus V$.
A **linear relation** \(F : U \leadsto V \) from a vector space \(U \) to a vector space \(V \) is a linear subspace \(F \subseteq U \oplus V \).

We can compose linear relations in the usual way we compose relations. There is a symmetric monoidal category \(\text{FinRel}_k \) with:

- one object \(k^n \) for each \(n \in \mathbb{N} \)
- linear relations \(F : k^m \leadsto k^n \) as morphisms

and with tensor product given by direct sum. It has \(\text{FinVect}_k \) as a symmetric monoidal subcategory.
A **linear relation** $F : U \rightsquigarrow V$ from a vector space U to a vector space V is a linear subspace $F \subseteq U \oplus V$.

We can compose linear relations in the usual way we compose relations. There is a symmetric monoidal category FinRel_k with:

- one object k^n for each $n \in \mathbb{N}$
- linear relations $F : k^m \rightsquigarrow k^n$ as morphisms

and with tensor product given by direct sum. It has FinVect_k as a symmetric monoidal subcategory.

Fully general signal-flow diagrams are pictures of morphisms in FinRel_k, typically with $k = \mathbb{R}(s)$.
Besides the generators of FinVect_k we only need two more morphisms to generate FinRel_k:

6. The cup:

$$\cup$$

This is the linear relation

$$\cup: k^2 \rightsquigarrow \{0\}$$

given by

$$\cup = \{(x, x, 0) : x \in k\} \subseteq k^2 \oplus \{0\}$$
7. The **cap**:

\[\cap \]

This is the linear relation

\[\cap : \{0\} \leadsto k^2 \]

given by

\[\cap = \{(0, x, x) : x \in k\} \subseteq \{0\} \oplus k^2 \]
Theorem (Baez–Erbele, Bonchi–Sobociński–Zanasi)

FinRel$_k$ is the free symmetric monoidal category on a pair of interacting bimonoids over k.

Besides the relations we’ve seen so far, this statement summarizes the following extra relations:
(19)–(20) \(\cap \) and \(\cup \) obey the zigzag relations:
It follows that \((\text{FinRel}_k, \oplus)\) becomes a dagger-compact category, so we can ‘turn around’ any morphism \(F: U \rightsquigarrow V\) and get its adjoint \(F^\dagger: V \rightsquigarrow U:\)

\[
F^\dagger = \{(v, u) : (u, v) \in F\}
\]
It follows that \((\text{FinRel}_k, \oplus)\) becomes a dagger-compact category, so we can ‘turn around’ any morphism \(F : U \rightsquigarrow V\) and get its adjoint \(F^\dagger : V \rightsquigarrow U\):

\[
F^\dagger = \{ (v, u) : (u, v) \in F \}
\]

For example, turning around duplication \(\Delta : k \to k \oplus k\) gives coduplication, \(\Delta^\dagger : k \oplus k \rightsquigarrow k\):

\[
\Delta^\dagger = \{ (x, x, x) \} \subseteq k^2 \oplus k
\]
(21)-(22) \((k, +, 0, +^\dagger, 0^\dagger)\) is a Frobenius monoid:

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad \\
\end{array}
\]

(23)-(24) \((k, \Delta^\dagger, !^\dagger, \Delta, !)\) is a Frobenius monoid:

\[
\begin{array}{ccc}
\quad & \quad & \quad \\
\quad & \quad & \quad \\
\end{array}
\]
(25)–(26) The Frobenius monoid \((k, +, 0, +^\dagger, 0^\dagger)\) is extra-special:
\[
\begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1cm]{monoid1}}
\end{array}
\quad = \quad \\
\begin{array}{c}
\text{\includegraphics[width=1cm]{monoid2}}
\end{array}
\end{array}
\]

(27)–(28) The Frobenius monoid \((k, \Delta^\dagger, !^\dagger, \Delta, !)\) is extra-special:
\[
\begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1cm]{monoid3}}
\end{array}
\quad = \quad \\
\begin{array}{c}
\text{\includegraphics[width=1cm]{monoid4}}
\end{array}
\end{array}
\]
(29) \cup with a factor of -1 inserted can be expressed in terms of $+$ and 0:

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics{image1}}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics{image2}}
\end{array}
\end{align*}
\]

(30) \cap can be expressed in terms of Δ and $!$:

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics{image3}}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\text{\includegraphics{image4}}
\end{array}
\end{align*}
\]
(31) For any $c \in k$ with $c \neq 0$, scalar multiplication by c^{-1} is the adjoint of scalar multiplication by c:
This is part of a larger story:

An electrical circuit made of resistors, resistors and capacitors gives a linear relation between its input and output voltages and currents. Baez and Fong showed this gives a symmetric monoidal functor:

\[
\text{Circ} \longrightarrow \text{FinRel}_\mathbb{R}(s)
\]

This gives the ‘semantics’ for circuit diagrams. For circuits made only of resistors, we have

\[
\text{ResCirc} \longrightarrow \text{FinRel}_\mathbb{R}
\]
Similarly, Baez, Fong and Pollard showed that the steady states of an open detailed balanced Markov process determine a linear relation between its input and output populations and flows. This gives a symmetric monoidal functor $\boxtimes : \text{DetBalMark} \to \text{FinRel}_\mathbb{R}$ fitting into this diagram:

In short, we can reduce the ‘steady-state semantics’ of detailed balanced Markov processes to that of circuits made of resistors!